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Perform simple and accurate Hankel transformations using the method of Ogata 2005.

Hankel transforms and integrals are commonplace in any area in which Fourier Transforms are required over fields
that are radially symmetric (see Wikipedia for a thorough description). They involve integrating an arbitrary function
multiplied by a Bessel function of arbitrary order (of the first kind). Typical integration schemes often fail because
of the highly oscillatory nature of the transform. Ogata’s quadrature method used in this package provides a fast and
accurate way of performing the integration based on locating the zeros of the Bessel function.
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FEATURES

• Accurate and fast solutions to many Hankel integrals

• Easy to use and re-use

• Arbitrary order transforms

• Built-in support for radially symmetric Fourier Transforms

• Thoroughly tested.

• only Python 3 compatible.
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QUICK LINKS

• Documentation: https://hankel.readthedocs.io

• Quickstart+Description: Getting Started

5

https://hankel.readthedocs.io
https://hankel.readthedocs.io/en/latest/demos/getting_started.html


hankel Documentation, Release 1.0.2

6 Chapter 2. Quick links



CHAPTER

THREE

INSTALLATION

Either clone the repository and install locally (best for developer installs):

$ git clone https://github.com/steven-murray/hankel.git
$ cd hankel/
$ pip install -U .

Or install from PyPI:

$ pip install hankel

Or install with conda:

$ conda install -c conda-forge hankel

The only dependencies are numpy, scipy and mpmath. These will be installed automatically if they are not already
installed.

Dependencies required purely for development (testing and linting etc.) can be installed via the optional extra pip
install hankel[dev]. If using conda, they can still be installed via pip: pip install -r requirements_dev.txt.

For instructions on testing hankel or any other development- or contribution-related issues, see the contributing guide.
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6.1 Examples

To help get you started using hankel, we’ve compiled a few extended examples. Other simple examples can be
found in the API documentation for each object, or by looking at some of the tests.

6.1.1 Getting Started with Hankel

Usage and Description

Setup

This implementation is set up to allow efficient calculation of multiple functions 𝑓(𝑥). To do this, the format is class-
based, with the main object taking as arguments the order of the Bessel function, and the number and size of the
integration steps (see Limitations for discussion about how to choose these key parameters).

For any general integration or transform of a function, we perform the following setup:

[1]: import hankel
from hankel import HankelTransform # Import the basic class
print("Using hankel v{}".format(hankel.__version__))

Using hankel v0.3.7

[2]: ht = HankelTransform(
nu= 0, # The order of the bessel function
N = 120, # Number of steps in the integration
h = 0.03 # Proxy for "size" of steps in integration

)

Alternatively, each of the parameters has defaults, so you needn’t pass any. The order of the bessel function will be
defined by the problem at hand, while the other arguments typically require some exploration to set them optimally.

13
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Integration

A Hankel-type integral is the integral ∫︁ ∞

0

𝑓(𝑥)𝐽𝜈(𝑥)𝑑𝑥.

Having set up our transform with nu = 0, we may wish to perform this integral for 𝑓(𝑥) = 1. To do this, we do the
following:

[3]: # Create a function which is identically 1.
f = lambda x : 1
ht.integrate(f)

[3]: (1.0000000000003486, -9.838142836853752e-15)

The correct answer is 1, so we have done quite well. The second element of the returned result is an estimate of the
error (it is the last term in the summation). The error estimate can be omitted using the argument ret_err=False.

We may now wish to integrate a different function, say 𝑥/(𝑥2 + 1). We can do this directly with the same object,
without re-instantiating (avoiding unnecessary recalculation):

[4]: f = lambda x : x/(x**2 + 1)
ht.integrate(f)

[4]: (0.42098875721567186, -2.6150757700135774e-17)

The analytic answer here is 𝐾0(1) = 0.4210. The accuracy could be increased by creating ht with a higher number
of steps N, and lower stepsize h (see Limitations).

Transforms

The Hankel transform is defined as

𝐹𝜈(𝑘) =

∫︁ ∞

0

𝑓(𝑟)𝐽𝜈(𝑘𝑟)𝑟𝑑𝑟.

We see that the Hankel-type integral is the Hankel transform of 𝑓(𝑟)/𝑟 with 𝑘 = 1. To perform this more general
transform, we must supply the 𝑘 values. Again, let’s use our previous function, 𝑥/(𝑥2 + 1).

First we’ll import some libraries to help us visualise:

[5]: import numpy as np # Import numpy
import matplotlib.pyplot as plt
%matplotlib inline

Now do the transform,

[6]: k = np.logspace(-1,1,50) # Create a log-spaced array of k from 0.1 to 10.
Fk = ht.transform(f,k,ret_err=False) # Return the transform of f at k.

and finally plot it:

[8]: plt.plot(k,Fk)
plt.xscale('log')
plt.yscale('log')
plt.ylabel(r"$F_0(k)$", fontsize=15)
plt.xlabel(r"$k$", fontsize=15)
plt.show()

14 Chapter 6. Contents
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Fourier Transforms

One of the most common applications of the Hankel transform is to solve the radially symmetric n-dimensional Fourier
transform:

𝐹 (𝑘) =
(2𝜋)𝑛/2

𝑘𝑛/2−1

∫︁ ∞

0

𝑟𝑛/2−1𝑓(𝑟)𝐽𝑛/2−1(𝑘𝑟)𝑟𝑑𝑟.

We provide a specific class to do this transform, which takes into account the various normalisations and substitutions
required, and also provides the inverse transform. The procedure is similar to the basic HankelTransform, but we
provide the number of dimensions, rather than the Bessel order directly.

Say we wish to find the Fourier transform of 𝑓(𝑟) = 1/𝑟 in 3 dimensions:

[9]: # Import the Symmetric Fourier Transform class
from hankel import SymmetricFourierTransform

# Create our transform object, similar to HankelTransform,
# but with ndim specified instead of nu.
ft = SymmetricFourierTransform(ndim=3, N = 200, h = 0.03)

# Create our kernel function to be transformed.
f = lambda r : 1./r

# Perform the transform
Fk = ft.transform(f,k, ret_err=False)

[10]: plt.plot(k,Fk)
plt.xscale('log')
plt.yscale('log')
plt.ylabel(r"$\mathcal{F}(k)$")
plt.xlabel(r"$k$")
plt.show()

6.1. Examples 15
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To do the inverse transformation (which is different by a normalisation constant), merely supply inverse=True to
the .transform() method.

Limitations

Efficiency

An implementation-specific limitation is that the method is not perfectly efficient in all cases. Care has been taken
to make it efficient in the general sense. However, for specific orders and functions, simplifications may be made
which reduce the number of trigonometric functions evaluated. For instance, for a zeroth-order spherical transform,
the weights are analytically always identically 1.

Lower-Bound Convergence

Theoretically, since Bessel functions have asymptotic power-law slope of 𝑛/2 − 1 as 𝑟 → 0, the function 𝑓(𝑟) must
have an asymptotic slope > −𝑛/2 in this regime in order to converge. This restriction is method-independent.

In terms of limitations of the method, they are very dependent on the form of the function chosen. Notably, functions
which either have sharp features at low 𝑟, or tend towards a slope of ∼ −𝑛/2, will be poorly approximated in this
method, and will be highly dependent on the step-size parameter, as the information at low-x will be lost between 0
and the first step. As an example consider the simple function 𝑓(𝑥) = 1/

√
𝑥 with a 1/2 order bessel function. The

total integrand tends to 1 at 𝑥 = 0, rather than 0:

[11]: f = lambda x: 1/np.sqrt(x)
h = HankelTransform(0.5,120,0.03)
h.integrate(f)

[11]: (1.2336282257874065, -2.864861354876958e-16)

The true answer is
√︀
𝜋/2, which is a difference of about 1.6%. Modifying the step size and number of steps to gain

accuracy we find:

[12]: h = HankelTransform(0.5,700,0.001)
h.integrate(f)

16 Chapter 6. Contents
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[12]: (1.2523045155005623, -0.0012281146007915768)

This has much better than percent accuracy, but uses 5 times the amount of steps. The key here is the reduction of h to
“get inside” the low-x information.

Upper-Bound Convergence

Theoretically, since the Bessel functions decay as 𝑟−1/2 cos 𝑟 as 𝑓 → ∞, the asymptotic logarithmic slope of 𝑓(𝑟)
must be < (1− 𝑛)/2 in order to converge.

As the asymptotic slope approaches this value, higher and higher zeros of the Bessel function will be required to
capture the convergence. Often, it will be the case that if this is so, the amplitude of the function is low at low 𝑥, so
that the step-size h can be increased to facilitate this. Otherwise, the number of steps N can be increased.

For example, the 1/2-order integral supports functions that are increasing up to 𝑓(𝑥) = 𝑥0.5. Let’s use 𝑓(𝑥) = 𝑥0.4

as an example of a slowly converging function, and use our “hi-res” setup from the previous section. We note that the
analytic result is 0.8421449.

[20]: f = lambda x : x**0.4

[25]: %%timeit
HankelTransform(0.5,700,0.001).integrate(f)

735 µs ± 8.11 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

[26]: res = HankelTransform(0.5,700,0.001).integrate(f)
print("Relative Error is: ", res[0]/0.8421449 - 1)
print("Predicted Abs. Error is: ", res[1])

Relative Error is: -0.362600451237186
Predicted Abs. Error is: -1.05909546212511

Our result is way off. Note that in this case, the error estimate itself is a good indication that we haven’t reached
convergence. We could try increasing N:

[27]: h = HankelTransform(0.5,10000,0.001)
print("Relative Error is: ", h.integrate(f,ret_err=False)/0.8421449 -1)

Relative Error is: 7.133537831549575e-07

This is very accurate, but quite slow:

[28]: %%timeit
HankelTransform(0.5,10000,0.001).integrate(f)

9.12 ms ± 211 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Alternatively, we could try increasing h:

[18]: h = HankelTransform(0.5,700,0.03)
h.integrate(f,ret_err=False)/0.8421449 -1

[18]: 0.00045613842025526985

Not quite as accurate, but still far better than a percent for a tenth of the cost:

6.1. Examples 17
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[29]: %%timeit
HankelTransform(0.5,700,0.03).integrate(f)

718 µs ± 2.04 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

We explore how to determine 𝑁 and ℎ in more detail in another demo, and hankel provides the get_h function to
automatically determine these values (at some computational cost).

6.1.2 Testing Forward and Inverse Hankel Transform

This is a simple demo to show how to compute the forward and inverse Hankel transform, essentially returning to the
original function.

This is a common application, where often the transformed function is modified before performing the inverse trans-
form (eg. in the calculation of a Laplacian). However, it is not explicitly supported by hankel, since the transformed
function itself is merely encoded as a set of values, rather than a callable function. This demo shows the simplest route
to closing this gap, using splines. It also highlights some of the issues one may encounter along the way.

This application is also important, as it is able to self-consistently test the accuracy of the transformation for any
arbitrary function 𝑓(𝑟). The returned function should be very close to this function for an accurate transform. This
idea is explored further in the demo on choosing resolution parameters.

We use the function 𝑓(𝑟) = 1/(𝑟2 + 1) as an example function.

[1]: # Import libraries

import numpy as np
import hankel
from hankel import HankelTransform # Transforms

from scipy.interpolate import InterpolatedUnivariateSpline as spline # Spline

import matplotlib.pyplot as plt # Plotting
%matplotlib inline

print("Using hankel v{}".format(hankel.__version__))

Using hankel v0.3.7

[53]: # Define grid

r = np.linspace(0,1,100)[1:] # Define a physical grid
k = np.logspace(-3,2,100) # Define a spectral grid

[54]: # Compute Forward Hankel transform

f = lambda r : 1/(r**2 + 1) # Sample Function
h = HankelTransform(nu=0,N=1000,h=0.005) # Create the HankelTransform
→˓instance, order zero
hhat = h.transform(f,k,ret_err=False) # Return the transform of f at k.

[55]: # Compute Inverse Hankel transform

hhat_sp = spline(k, hhat) # Define a spline to
→˓approximate transform
f_new = h.transform(hhat_sp, r, False, inverse=True) # Compute the inverse transform

18 Chapter 6. Contents
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[56]: def mkplot(f_new):
fig,ax = plt.subplots(2,1,sharex=True,gridspec_kw={"hspace":0})

ax[0].semilogy(r,f(r), linewidth=2,label='original')
ax[0].semilogy(r,f_new,ls='--',linewidth=2,label='transformed')
ax[0].grid(True)
ax[0].legend(loc='best')

ax[1].plot(r,np.abs(f(r)/f_new-1))
ax[1].set_yscale('log')
ax[1].set_ylim(None,30)
ax[1].grid(True)
ax[1].set_ylabel("Rel. Diff.")
plt.show()

[57]: # Plot the original function and the transformed functions
mkplot(f_new)

The result here is reasonable, though not very accurate, especially at small 𝑟.

In practice, there are three aspects that affect the accuracy of the round-trip transformed function, other than the
features of the function itself:

1. the value of N, which controls the the upper limit of the integral (and must be high enough for convergence),

2. the value of h, which controls the resolution of the array used to do integration. Most importantly, controls the
position of the first sample of the integrand. In a function such as 1/𝑟, or something steeper, this must be small
to capture the large amount of information at low 𝑟.

3. the resolution/range of 𝑘, which is used to define the function which is inverse-transformed.

As a simple empirical exercise, we modify each of these three below to estimate their importance in this particular
transform (see the demo on choosing resolution parameters for a more thorough investigation):

6.1. Examples 19
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Changing N

[58]: h = HankelTransform(nu=0,N=5000,h=0.005) # Create the HankelTransform
→˓instance, order zero
hhat = h.transform(f,k,ret_err=False) # Return the transform of f at k.

hhat_sp = spline(k, hhat) # Define a spline to
→˓approximate transform
f_new = h.transform(hhat_sp, r, False, inverse=True) # Compute the inverse transform

[60]: mkplot(f_new)

Increasing 𝑁 in this case does not seem to make the solution any better.

Changing h

[61]: h = HankelTransform(nu=0,N=5000,h=0.001) # Create the HankelTransform
→˓instance, order zero
hhat = h.transform(f,k,ret_err=False) # Return the transform of f at k.

hhat_sp = spline(k, hhat) # Define a spline to
→˓approximate transform
f_new = h.transform(hhat_sp, r, False, inverse=True) # Compute the inverse transform

[62]: mkplot(f_new)
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Clearly changing ℎ makes much more of a difference, reducing the relative error by an order of magnitude. In this
case, we ensured that the product ℎ𝑁 remained the same (as the original example), so that the upper bound on the
summation remained approximately the same. This indicates that either 𝑓(𝑟) or 𝐹 (𝑘) has high-resolution information.

Changing k

[63]: k = np.logspace(-3,3,200) # Define a spectral grid

h = HankelTransform(nu=0,N=5000,h=0.001) # Create the HankelTransform
→˓instance, order zero
hhat = h.transform(f,k,ret_err=False) # Return the transform of f at k.

hhat_sp = spline(k, hhat) # Define a spline to
→˓approximate transform
f_new = h.transform(hhat_sp, r, False, inverse=True) # Compute the inverse transform

[64]: mkplot(f_new)

Having set 𝑘 to extend to smaller scales, as well as increasing its resolution, has not helped the accuracy of the
transformation, though it does seemed to have smoothed out small-scale wiggles in the transformation. Thus we

6.1. Examples 21
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can see that the predominant problem in this case was that the integration grid was not fine enough to capture the
small-scale information in the function (either 𝑓(𝑟) or 𝐹 (𝑘)).

Any procedure like this will have to explore the values of these three parameters in order to set them as efficiently and
accurately as possible.

6.1.3 Choosing Resolution Parameters

The only real choices to be made when using hankel are the choice of resolution parameters 𝑁 and ℎ. Roughly
speaking, ℎ controls the quadrature bin width, while 𝑁 controls the number of these bins, ideally simulating infinity.
Here we identify some rules of thumb for choosing these parameters so that desired precision can be attained.

For ease of reference, we state our problem explicitly. We’ll deal first with the simple Hankel integral, moving onto
a transformation, and Symmetric FT in later sections. For an input function 𝑓(𝑥), and transform of order 𝜈, we are
required to solve the Hankel integral ∫︁ ∞

0

𝑓(𝑥)𝐽𝜈(𝑥)𝑑𝑟. (6.1)

The O5 method approximates the integral as

𝑓(𝐾) = 𝜋

𝑁∑︁
𝑘=1

𝑤𝜈𝑘𝑓 (𝑦𝜈𝑘) 𝐽𝜈(𝑦𝜈𝑘)𝜓
′(ℎ𝑟𝜈𝑘), (6.2)

where

𝑦𝜈𝑘 = 𝜋𝜓(ℎ𝑟𝜈𝑘)/ℎ (6.3)
𝜓(𝑡) = 𝑡 tanh(𝜋 sinh(𝑡)/2) (6.4)

𝜓′(𝑡) =
𝜋𝑡 cosh(𝑡) + sinh(𝜋 sinh(𝑡))

1 + cosh(𝜋 sinh(𝑡))
(6.5)

𝑤𝜈𝑘 =
𝑌𝜈(𝜋𝑟𝜈𝑘)

𝐽𝜈+1(𝜋𝑟𝜈𝑘)
. (6.6)

Here 𝑌𝜈(𝑥) is a Bessel function of the second kind, and 𝑟𝜈𝑘 are the roots of 𝐽𝜈(𝜋𝑟).

Simple Hankel Integral

Choosing N given h

Choosing a good value of 𝑁 given ℎ is a reasonably simple task. The benefit of the O5 method is that the successive
nodes approach the roots of the Bessel function double-exponentially. This means that at some term 𝑘 in the series,
the Bessel function term in the sum approaches zero, and for reasonably low 𝑘.

This is because for large 𝑡, 𝜓(𝑡) ≈ 𝑡, so that 𝑦𝜈𝑘 ≈ 𝜋𝑟𝜈𝑘, which are the roots (𝑟 are the roots scaled by 𝜋). Thus we
can expect that a plot of the values of 𝐽𝜈(𝑦𝜈𝑘) should fall to zero, and they should do this approximately identically as
a function of ℎ𝑟𝜈𝑘.

[1]: from scipy.special import yv,jv
from scipy.integrate import simps
from mpmath import fp as mpm
import numpy as np

import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline

(continues on next page)
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(continued from previous page)

%load_ext autoreload
%autoreload 2

from hankel import HankelTransform, SymmetricFourierTransform
import hankel
print("Using hankel v{}".format(hankel.__version__))

Using hankel v0.3.7

[2]: mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['xtick.labelsize'] = 15
mpl.rcParams['ytick.labelsize'] = 15
mpl.rcParams['font.size'] = 17
mpl.rcParams['axes.titlesize'] = 14

We test our assertion by plotting these values for a range of 𝜈 and ℎ:

[3]: fig,ax = plt.subplots(1,2,figsize=(12,5), subplot_kw={"yscale":'log'})
for nu in np.arange(0,4,0.5):

ht= HankelTransform(nu=nu,N=1000, h = 0.01)
ax[0].plot(ht._h*np.arange(1,1001), np.abs(jv(ht._nu, ht.x)), label=str(nu))

for h in [0.005,0.01,0.05]:
ht= HankelTransform(nu=0,N=10/h, h = h)
ax[1].plot(ht._h*np.arange(1,10/h+1), np.abs(jv(ht._nu, ht.x)), label=str(h))

ax[0].legend(ncol=2, title=r"$\nu$")
ax[1].legend(title='h')
ax[0].set_ylabel(r"$J_\nu(y_{\nu k})$")
ax[0].set_xlabel(r"$hk$")
ax[1].set_xlabel(r"$hk$");

Interestingly, the fall-off is very similar across a range of both 𝜈 and ℎ. We can compute where approximately the
fall-off is completed:

[4]: for i,nu in enumerate( np.arange(0,4)):

(continues on next page)
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(continued from previous page)

for j,h in enumerate(np.logspace(-3,-1,6)):
ht= HankelTransform(nu=nu,N=int(3.2/h), h = h)
plt.scatter(nu,ht._h*ht._zeros[np.where(np.abs(jv(ht._nu, ht.x))<1e-

→˓13)[0][0]],color="C%s"%j,label="%.3f"%h if not i else None)

plt.xlabel(r"$\nu$")
plt.ylabel(r"$hr_{\nu k}$")
plt.xlim(-0.5,6)
plt.legend(title="h");

Clearly, we can cut the summation at ℎ𝑟𝜈𝑘 = 𝜋 without losing any precision. We do not want to sum further than this
for two reasons: firstly, it is inefficient to do so, and secondly, we could be adding unnecessary numerical noise.

Now, let’s assume that 𝑁 is reasonably large, so that the Bessel function is close to its asymptotic limit, in which

𝑟𝜈𝑘 = 𝑘 − 𝜋𝜈

2
− 𝜋

4
≈ 𝑘. (6.7)

Then we merely set ℎ𝑟𝜈𝑘 = ℎ𝑁 = 3.2, i.e. 𝑁 = 𝜋/ℎ.

It may be a reasonable question to ask whether we could set 𝑁 significantly lower than this limit. The function 𝑓(𝑥)
may converge faster than the Bessel function itself, in which case the limit could be reduced. In this regard it is useful
to keep in mind that the sum extends to 𝑟 ∼ 𝜋𝑁 , if 𝑁 is reasonably large. If 𝑓(𝑥) falls to zero for 𝑥 ≪ 𝜋2/ℎ, then it
is probably reasonable to use a lower value of 𝑁 .

However, for simplicity, for the rest of our analysis, we consider 𝑁 to be set by this relation, and change ℎ to modify
𝑁 .

Choosing h

O5 give a rather involved proof of an upper limit on the residual error of their method as a function of ℎ. Unfortunately,
evaluating the upper limit is non-trivial, and we pursue a more tractable approach here, namely iteratively modifying
ℎ until convergence is reached.

As an example, let’s take a sharp Gaussian, 𝑓(𝑥) = 𝑒−(𝑥−80)2 with 𝜈 = 0:
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[5]: x = np.linspace(0,200.,1000000)
ff = lambda x : np.exp(-(x-80.)**2/1.)
plt.plot(x,ff(x) * jv(0,x))

res80 = simps(ff(x) * jv(0,x),x)
print("Integral is: ", res80)

Integral is: -0.09651170657186205

[6]: print("h\tN\txmax\t#nodes in peak\t Rel. Err.")
print("---------------------------------------------")

for h in np.logspace(-4,0,10):
N = int(np.pi/h)
ht = HankelTransform(nu=0, h=h, N=N)
G = ht.G(ff,h)
ans,cum = ht.integrate(f= ff,ret_cumsum=True,ret_err=False)
print(f"{h:.2e}\t{N}\t{np.pi*N:.2e}\t{np.sum(np.logical_and(ht.x>78,ht.x<82))}\t

→˓{ans/res80 - 1:.2e}")

h N xmax #nodes in peak Rel. Err.
---------------------------------------------
1.00e-04 31415 9.87e+04 10 -1.01e-14
2.78e-04 11290 3.55e+04 6 2.10e-08
7.74e-04 4057 1.27e+04 4 -5.55e-03
2.15e-03 1458 4.58e+03 3 2.76e-01
5.99e-03 524 1.65e+03 1 1.00e+00
1.67e-02 188 5.91e+02 1 -1.25e+00
4.64e-02 67 2.10e+02 1 1.38e+00
1.29e-01 24 7.54e+01 0 -1.00e+00
3.59e-01 8 2.51e+01 0 -1.00e+00
1.00e+00 3 9.42e+00 0 -1.00e+00

In the above example we see that only for very large values of ℎ was the criteria of negative derivative not met.
However, the criteria of covering the interesting region with nodes was only met by the smallest 5 values of ℎ, each of
which yields a good value of the integral.

Doing the same example, but moving the Gaussian closer to zero yields a different answer:
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[7]: x = np.linspace(0,10,10000)
ff = lambda x : np.exp(-(x-2)**2)
plt.plot(x,ff(x) * jv(0,x))

res = simps(ff(x) * jv(0,x),x)
print("Integral is: ", res)

Integral is: 0.4168433779916697

[8]: print("h\tN\txmax\t#nodes in peak\t Rel. Err.")
print("---------------------------------------------")

for h in np.logspace(-4,0,10):
N = int(np.pi/h)
ht = HankelTransform(nu=0, h=h, N=N)
G = ht.G(ff,h)
ans,cum = ht.integrate(f= ff,ret_cumsum=True,ret_err=False)
print(f"{h:.2e}\t{N}\t{np.pi*N:.2e}\t{np.sum(np.logical_and(ht.x>78,ht.x<82))}\t

→˓{ans/res - 1:.2e}")

h N xmax #nodes in peak Rel. Err.
---------------------------------------------
1.00e-04 31415 9.87e+04 10 -2.47e-11
2.78e-04 11290 3.55e+04 6 -2.47e-11
7.74e-04 4057 1.27e+04 4 -2.47e-11
2.15e-03 1458 4.58e+03 3 -2.47e-11
5.99e-03 524 1.65e+03 1 2.45e-08
1.67e-02 188 5.91e+02 1 -1.09e-03
4.64e-02 67 2.10e+02 1 7.81e-02
1.29e-01 24 7.54e+01 0 5.37e-01
3.59e-01 8 2.51e+01 0 5.97e-01
1.00e+00 3 9.42e+00 0 6.09e-01

Here we are able to achieve good precision with just ~500 terms.

These ideas are built into the get_h function in hankel. In particular, this function progressively iterates through
a series of values for ℎ, and stops when two consecutive results are within a certain tolerance of each other. On each
iteration, it uses 𝑁 = 𝜋/ℎ.

While this function is not entirely general – there are cases in which the algorithm will return prematurely – it should
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do well in cases where the integrand is reasonably smooth. In addition to the convergence of the result, it also checks
that the derivative of 𝐺 is decreasing. Furthermore, it truncates 𝑁 if possible such that 𝑓(𝑥𝑘) = 0 ∀𝑘 > 𝑁 .

An example:

[9]: best_h, result, best_N = hankel.get_h(
f =lambda x : np.exp(-(x-2)**2),
nu=0

)
print(f"best_h = {best_h}, best_N={best_N}")
print("Relative Error: ", result/res - 1)

best_h = 0.0125, best_N=22
Relative Error: -0.00011951202608917466

Here we can see that while a low value of ℎ was required, a corresponding high value of 𝑁 was not, as the function
itself converges quickly.

We can also repeat our previous experiment where a sharp Gaussian sits at high 𝑥:

[10]: best_h, result, best_N = hankel.get_h(
f =lambda x : np.exp(-(x-80.)**2),
nu =0

)

print(f"best_h = {best_h}, best_N={best_N}")
print("Relative Error: ", result/res80 - 1)

best_h = 0.00078125, best_N=168
Relative Error: 0.002185348402481635

Here both a lower ℎ and higher 𝑁 are required, but again, 𝑁 does not need to be as large as 𝜋/ℎ.

We can modify the required tolerance:

[11]: best_h, result, best_N = hankel.get_h(
f =lambda x : np.exp(-(x-2)**2),
nu=0,
atol=1e-10,
rtol=1e-15

)
print(f"best_h = {best_h}, best_N={best_N}")
print("Relative Error: ", result/res - 1)

best_h = 0.003125, best_N=44
Relative Error: -2.470723625691562e-11

Remember that the tolerances submitted to the get_h function apply to the similarity between successive iterations.
The relative error displayed here may be dominated by numerical error on the simpson’s integration.

Finally we try a different kind of function, namely one that converges slowly:

[12]: best_h, result, best_N = hankel.get_h(
f =lambda x : x**0.4,
nu=0.5,
atol=1e-5,
rtol=1e-5

)
print(f"best_h = {best_h}, best_N={best_N} (max is {int(np.pi/best_h)})")
print("Relative Error: ", result/0.8421449 - 1)
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best_h = 0.00625, best_N=502 (max is 502)
Relative Error: 2.317849153432583e-05

In this case, the required 𝑁 is the maximum required, as we need to integrate quite far in order to converge.

Symmetric Fourier Transform

In the context of the symmetric Fourier Transform, much of the work is exactly the same – the relationship between 𝑁
and ℎ necessarily remains. The only differences are that we now use the SymmetricFourierTransform class
instead of the HankelTransform (and pass ndim rather than nu), and that we are now interested in the transform,
rather than the integral, so we have a particular set of scales, 𝐾, in mind.

For a given 𝐾, the minimum and maximum values of 𝑥 that we evaluate 𝑓(𝑥) for are 𝑥min ≈ 𝜋2ℎ𝑟2𝜈1/2𝐾 and
𝑥max ≈ 𝜋𝑁/𝐾. We suggest find a value ℎ that works for both the minimum and maximum 𝐾 desired. All scales in
between should work in this case.

We have already written this functionality into the get_h function. However, here nu is interpreted directly as n, and
we need to pass a value for 𝐾.

[13]: hankel.get_h(
f = lambda x : np.exp(-x**2), nu=2,
K= np.array([0.01, 100]),
cls=SymmetricFourierTransform

)

[13]: (0.05, array([8.25274593e-88, 1.38996118e-09]), 62)

6.1.4 Computing Laplacian Transforms with Hankel vs FFT

This will compare the forward and inverse transforms for both Hankel and Fourier by either computing partial deriva-
tives of solving a parital differential equation. This notebook focuses on the Laplacian operator in the case of radial
symmetry.

Consider two 2D circularly-symmetric functions 𝑓(𝑟) and 𝑔(𝑟) that are related by the following differential operator,

𝑔(𝑟) = ∇2𝑓(𝑟) =
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑓

𝜕𝑟

)︂
In this notebook we will consider four problems: 1. Given 𝑓(𝑟), compute the Laplacian to obtain 𝑔(𝑟) 2. Given 𝑔(𝑟),
invert the Laplacian to obtain 𝑓(𝑟) 3. Repeat step 1., but under the assumption that 𝑓(𝑟) is defined in 3D. 4. Repeat
step 1., but for 𝑛-dimensional 𝑓(𝑟).

For our fiducial 2D case, we can use the 1D Hankel (or 2D Fourier) transform to compute the Laplacian in three steps:

1. Compute the Forward Transform

ℋ[𝑓(𝑟)] = 𝑓(𝑘)

2. Differentiate in Spectral space

𝑔(𝑘) = −𝑘2𝑓(𝑘)

$

3. Compute the Inverse Transform
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𝑔(𝑟) = ℋ−1[𝑔(𝑘)]

In particular, we will use the function

𝑓(𝑟) = 𝑒−𝑟2 ,

and, though it is arbitrary, we will use the Fourier convention that (𝑎, 𝑏) = (1, 1) (i.e. 𝐹 (𝑘) =
∫︀
𝑑𝑟 𝑓(𝑟)𝑒−𝑖𝑘·𝑟). This

gives the corollary functions

𝑓(𝑘) = 𝜋𝑒−𝑘2/4

𝑔(𝑘) = −𝑘2𝜋𝑒−𝑘2/4

𝑔(𝑟) = 4𝑒−𝑟2(𝑟2 − 1)

This is easily done in two-dimensions using the Fast Fourier Transform (FFT) but one advantage of the Hankel trans-
form is that we only have a one-dimensional transform. The purpose of this notebook is twofold:

1. To show how one would solve the 𝑛-dimensional Laplacian numerically using Hankel transforms

2. To compare the performance and accuracy of the Hankel-based approach and an FFT-based approach to the
solutions.

We shall see that over a suitable range of scales, and for low number of dimensions 𝑛, the FFT approach is more
accurate than the Hankel approach, due to the fact that its forward-then-inverse operation is an identity operation by
construction (whereas the numerical Hankel routine loses information in both directions). Nevertheless, the Hankel
method, without much tuning, is shown to be accurate to 10−5 over many of the useful scales. Furthermore, as the
dimensionality grows, the Hankel transform becomes the only viable option computationally.

Setup

Import Relevant Libraries

[3]: # Import Libraries

import numpy as np # Numpy
from powerbox import dft # powerbox
→˓for DFTs (v0.6.0+)
from hankel import SymmetricFourierTransform # Hankel
from scipy.interpolate import InterpolatedUnivariateSpline as spline # Splines
import matplotlib.pyplot as plt # Plotting
%matplotlib inline

import hankel
print("Using hankel v{}".format(hankel.__version__))

Using hankel v0.3.8

Define Sample Functions

[4]: f = lambda r: np.exp(-r**2)
g = lambda r: 4.0*np.exp(-r**2)*(r**2 - 1.0)
fhat = lambda k : np.pi * np.exp(-k**2/4)
ghat = lambda k : -k**2 * np.pi * np.exp(-k**2/4)
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Define Transformation Functions

[15]: def ft2d(X, L, inverse=False):
"""Convenience function for getting nD Fourier Transform and a 1D function of it""

→˓"
if inverse:

ft, _, xgrid = dft.ifft(X, L=L, a=1, b=1, ret_cubegrid=True)
else:

ft, _, xgrid = dft.fft(X, L=L, a=1, b=1, ret_cubegrid=True)

# Get a sorted array of the transform
ind = np.argsort(xgrid.flatten())
_xgrid = xgrid.flatten()[ind]
_ft = ft.flatten()[ind]

# Just take unique values.
_xgrid, ind = np.unique(_xgrid, return_index=True)
_ft = _ft[ind]

return ft, xgrid, _xgrid, _ft.real # we only deal with real functions here.

Grid Setup

[4]: L = 10.0 # Size of box for transform
N = 128 # Grid size
b0 = 1.0

[77]: # Create the Hankel Transform object

ht = SymmetricFourierTransform(ndim=2, h=0.005)

[20]: dr = L/N

# Create persistent dictionaries to track Hankel and Fourier results throughout.
H = {} # Hankel dict
F = {} # Fourier dict

r = np.linspace(dr/2, L-dr/2, N)

# 1D Grid for Hankel
H['r'] = r

# To decide on k values to use, we need to know the scales
# we'll require to evaluate on the *inverse* transform:
H['k'] = np.logspace(-0.5, 2.1, 2*N) # k-space is rather arbitrary.

# 2D Grid for Fourier
F['x'] = np.arange(-N, N)*dr
F['rgrid'] = np.sqrt(np.add.outer(F['x']**2, F['x']**2))
F['fgrid'] = f(F['rgrid'])
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Analytic Result

[21]: fig, ax = plt.subplots(1,2, gridspec_kw={"hspace":0.05}, figsize=(14, 4))

ax[0].plot(r, f(r), label="f(r)")
ax[0].plot(r, g(r), label='g(r)')
ax[0].set_xlim(r.min(), r.max())
plt.suptitle('Analytic Functions', fontsize=18)
ax[0].legend(loc='best', fontsize=15);
ax[0].set_xlabel("r", fontsize=15)

ax[1].plot(H['k'], fhat(H['k']), label="$\hat{f}(k)$")
ax[1].plot(H['k'], ghat(H['k']), label="$\hat{g}(k)$")
ax[1].legend(loc='best', fontsize=15)
ax[1].set_xlabel('k', fontsize=15)
ax[1].set_xlim(0, 20)

ax[0].grid(True)
ax[1].grid(True)

Utility Functions

[22]: def plot_comparison(x, y, ylabel, comp_ylim=None, F=F, H=H, **subplot_kw):
fnc = globals()[y]

subplot_kw.update({"xscale":'log'})

fig, ax = plt.subplots(
2,1, sharex=True, subplot_kw=subplot_kw,
figsize=(12, 7), gridspec_kw={"hspace":0.07})

ax[0].plot(H[x], fnc(H[x]), linewidth=2, label="Analytic", color="C2")
ax[0].plot(H[x], H[y],linewidth=2, ls="--", label="Hankel")
ax[0].plot(F[x], F[y],linewidth=2, ls="--", label="Fourier")

ax[0].legend(fontsize=14)
ax[0].grid(True)
ax[0].set_ylabel(ylabel, fontsize=15)

(continues on next page)
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(continued from previous page)

ax[1].plot(H[x], np.abs(H[y] - fnc(H[x])))
ax[1].plot(F[x], np.abs(F[y] - fnc(F[x])))
ax[1].grid(True)
ax[1].set_ylabel("Residual", fontsize=15)
ax[1].set_xlabel(x, fontsize=15)
ax[1].set_yscale('log')

if comp_ylim:
ax[1].set_ylim(comp_ylim)

Example 1: Compute Laplacian

1. Forward Transform

a. Hankel

[195]: # Compute Hankel transform

H['fhat'] = ht.transform(f, H['k'], ret_err=False) # Return the transform of f
→˓at k.

b. Fourier

[196]: F['fhat_grid'], F['kgrid'], F['k'], F['fhat'] = ft2d(F['fgrid'], 2*L)

c. Comparison

Comparing the results of the Hankel and Fourier Transforms, we have

[197]: plot_comparison('k', 'fhat', "$\hat{f}(k)$", comp_ylim=(1e-20, 1e-1))
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2. Inverse Transform

a. Hankel

[198]: # Build a spline to approximate ghat

H['ghat'] = -H['k']**2 * H['fhat']

# We can build the spline carefully since we know something about the function
spl = spline(np.log(H['k'][H['ghat']!=0]), np.log(np.abs(H['ghat'][H['ghat']!=0])),
→˓k=2)
_fnc = lambda k: np.where(k < 1e2, -np.exp(spl(np.log(k))), 0)

# Do the transform
H['g'] = ht.transform(_fnc, H['r'], ret_err=False, inverse=True)
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b. Fourier

[199]: F['ghat'] = -F['kgrid']**2 *F['fhat_grid']
F['ggrid'], _, F['r'], F['g'] = ft2d(F['ghat'], 2*L, inverse=True)

c. Compare

[200]: plot_comparison('r', 'g', "$g(r)$")

Example 2: Invert Laplacian

The Laplacian transformation can be inverted by following a similar set of steps in reverse:

1. Compute the Forward Transform

ℋ[𝑔(𝑟)] = 𝑔(𝑘)

2. Differentiate in Spectral space

𝑓(𝑘) = − 1

𝑘2
𝑔(𝑘)

3. Compute the Inverse Transform

𝑓(𝑟) = ℋ−1[𝑓(𝑘)]
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1. Forward Transform

a. Hankel

[201]: H['ghat'] = ht.transform(g, H['k'], ret_err=False) # Return the transform of g
→˓at k.

b. Fourier

[202]: # Compute Fourier Transform

F['ghat_grid'], _, _, F['ghat'] = ft2d(g(F['rgrid']), 2*L)

c. Compare

[203]: plot_comparison('k', 'ghat', "$\hat{g}(k)$")
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2. Inverse Transform

a. Hankel

[204]: # Interpolate onto a spline

spl_inv = spline(H['k'], -H['ghat']/H['k']**2)
H['f'] = ht.transform(spl_inv, H['r'], ret_err=False, inverse=True)

b. Fourier

[205]: # Differentiate in spectral space

F['fhat'] = -F['ghat_grid']/ F['kgrid']**2
F['fhat'][np.isnan(F['fhat'])] = np.pi # This is the limiting value at k=0.

F['fgrid'], _, F['r'], F['f'] = ft2d(F['fhat'], 2*L, inverse=True)

/home/steven/miniconda3/envs/hankel/lib/python3.7/site-packages/ipykernel/__main__.py:
→˓3: RuntimeWarning: divide by zero encountered in true_divide
app.launch_new_instance()

/home/steven/miniconda3/envs/hankel/lib/python3.7/site-packages/ipykernel/__main__.py:
→˓3: RuntimeWarning: invalid value encountered in true_divide
app.launch_new_instance()

c. Compare

[206]: plot_comparison('r', 'f', "$f(r)$")
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Example 3: Laplacian in 3D

Generalising the previous calculations slightly, we can perform the Laplacian transformation in 3D using the Hankel
transform correspondin to a circularly-symmetric FT in 3-dimensions (see the “Getting Started” notebook for details).
Analytically, we obtain

𝑓(𝑘) = 𝜋3/2𝑒−𝑘2/4

𝑔(𝑘) = −𝑘2𝜋3/2𝑒−𝑘2/4

𝑔(𝑟) = 4𝑒−𝑟2(𝑟2 − 1.5)

Analytic Functions

[6]: g3 = lambda r: 4.0*np.exp(-r**2)*(r**2 - 1.5)
fhat3 = lambda k : np.pi**(3./2) * np.exp(-k**2/4)
ghat3 = lambda k : -k**2 * fhat3(k)
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Grid Setup

[2]: L = 10.0 # Size of box for transform
N = 128 # Grid size
b0 = 1.0

[7]: # Create the Hankel Transform object

ht = SymmetricFourierTransform(ndim=3, h=0.005)

[11]: dr = L/N

# Create persistent dictionaries to track Hankel and Fourier results throughout.
H3 = {} # Hankel dict
F3 = {} # Fourier dict

r = np.linspace(dr/2, L-dr/2, N)

# 1D Grid for Hankel
H3['r'] = r

# To decide on k values to use, we need to know the scales
# we'll require to evaluate on the *inverse* transform:
H3['k'] = np.logspace(-0.5, 2.1, 2*N) # k-space is rather arbitrary.

# 2D Grid for Fourier
F3['x'] = np.arange(-N, N)*dr
F3['rgrid'] = np.sqrt(np.add.outer(F3['x']**2, np.add.outer(F3['x']**2, F3['x']**2))).
→˓reshape((len(F3['x']),)*3)
F3['fgrid'] = f(F3['rgrid'])

Forward

[24]: H3['fhat3'] = ht.transform(f, H3['k'], ret_err=False)
F3['fhat_grid'], F3['kgrid'], F3['k'], F3['fhat3'] = ft2d(F3['fgrid'], 2*L)

[25]: plot_comparison('k', 'fhat3', "$\hat{f}(k)$", comp_ylim=(1e-20, 1e-1), F=F3, H=H3)
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Backward

[28]: # Build a spline to approximate ghat

H3['ghat3'] = -H3['k']**2 * H3['fhat3']

# We can build the spline carefully since we know something about the function
spl = spline(np.log(H3['k'][H3['ghat3']!=0]), np.log(np.abs(H3['ghat3'][H3['ghat3']!
→˓=0])), k=2)
_fnc = lambda k: np.where(k < 1e2, -np.exp(spl(np.log(k))), 0)

# Do the transform
H3['g3'] = ht.transform(_fnc, H3['r'], ret_err=False, inverse=True)

[34]: F3['ghat3'] = -F3['kgrid']**2 *F3['fhat_grid']
F3['ggrid'], _, F3['r'], F3['g3'] = ft2d(F3['ghat3'], 2*L, inverse=True)

[35]: plot_comparison('r', 'g3', "$g_3(r)$", H=H3, F=F3)
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n-Dimensional Transform

Generalising again, the 𝑛-dimensionsal transform functions can be written

𝑓(𝑘) = 𝜋𝑛/2𝑒−𝑘2/4

𝑔(𝑘) = −𝑘2𝜋𝑛/2𝑒−𝑘2/4

𝑔(𝑟) = 2𝑒−𝑟2(2𝑟2 − 𝑛)

In this section, we show the performance (both in speed and accuracy) of the Hankel transform algorithm to produce
𝑔(𝑟) for arbitrary dimensions. We do not use the FT-method in this section as its memory consumption obviously
scales as 𝑁𝑛, and its CPU performance as 𝑛𝑁𝑛 log𝑁 .

[40]: gn = lambda r, n: 2* np.exp(-r**2) * (2*r**2 - n)

[37]: def gn_hankel(r, n, h=0.005):
ht = SymmetricFourierTransform(ndim=n, h=h)
k = np.logspace(-0.5, 2.1, 2*N)

fhat = ht.transform(f, k, ret_err=False)

ghat = -k**2 * fhat

# We can build the spline carefully since we know something about the function
spl = spline(np.log(k[ghat!=0]), np.log(np.abs(ghat[ghat!=0])), k=2)
_fnc = lambda k: np.where(k < 1e2, -np.exp(spl(np.log(k))), 0)

# Do the transform
return ht.transform(_fnc, r, ret_err=False, inverse=True)
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[49]: rs = np.array([0.5, 1.1, 1.5])
ns = np.arange(2, 12)

[50]: transform_at_r1 = np.array([gn_hankel(rs, n) for n in ns]) # Get numerical answers

[56]: transform_at_r1_anl = np.array([gn(rs, n) for n in ns]) # Get analytic answers

[62]: plt.figure(figsize=(10,5))
for i, r in enumerate(rs):

plt.plot(ns, transform_at_r1[:, i]/ transform_at_r1_anl[:, i] - 1, label="r = %s"
→˓%r)

plt.legend(fontsize=15)
plt.xlabel("Number of Dimensions", fontsize=15)
plt.ylabel("Relative Error", fontsize=15);

Let’s get the timing information for each calculation:

[82]: times = [0]*len(ns)
for i, n in enumerate(ns):

times[i] = %timeit -o gn_hankel(rs, n);

9.86 ms ± 489 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
7.91 ms ± 145 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
11.2 ms ± 507 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
327 ms ± 6.09 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
11 ms ± 90.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
324 ms ± 4.82 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
11.1 ms ± 104 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
329 ms ± 2.01 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
11.3 ms ± 34 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
339 ms ± 8.27 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Here’s a plot of the timing results. Note how odd-dimensions result in longer run-times, as the Bessel functions are
1/2-order, which requires more sophisticated methods from mpmath to calculate. There is no overall progression of
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the computational load with dimensionality, however.

This is in contrast to a FT approach, which scales as 𝑁𝑛, shown in green.

[100]: plt.figure(figsize=(10, 5))

plt.plot(ns, [t.best for t in times], label="Best Time")
plt.plot(ns, [t.average for t in times], label='Average Time')
plt.plot(ns[:6], 5e-9 * ns[:6] * (2*N)**ns[:6] * np.log(2*N), label="FT Scaling", ls =
→˓'--', marker='o')
plt.xlabel("Number of dimensions", fontsize=15)
plt.ylabel("Timing Result [seconds]", fontsize=15)
plt.ylim(1e-3, 10)
plt.yscale('log')
plt.legend(fontsize=15);

[100]: <matplotlib.legend.Legend at 0x7fb3df123d30>

6.2 License

Copyright (c) 2017 Steven Murray

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
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HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

6.3 Changelog

6.3.1 v1.0.0

Enhancements

• Limit calculation for k=0 provided (resulted in nan before)

• Alternative hankel kernel now selectable: sqrt(x) * J(nu, x)

• Caching of series factors for faster calculations

• Various infrastructure upgrades (setuptools_scm, pre-commit, black)

Bugfixes

• Saver calculation of xrange_approx

Deprecations

• Methods G and deltaG now named final_term_amplitude and slope_of_last_term.

6.3.2 0.3.9

Version corresponding to JOSS paper release.

Bugfixes

• Fixed SymmetricFourierTransform default N to be dynamic, like HankelTransform.

6.3.3 v0.3.8 [08 Jan 2019]

Enhancements

• Swapped to pytest from nose for all testing

• Removed warnings of overflow for cosh and sinh functions

• Improved documentation in many areas.

• Swapped out default 3.2/h for pi/h, which sounds way cooler :-)

Bugfixes

• Fixed an error in tests such that the wrong analytic function was being tested.

• Removed a check for deltaG in get_h, which sometimes fails spectacularly.
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6.3.4 v0.3.7 [11 Dec 2018]

Bugfixes

• Fixed issue in Py3 in which dim=2 would not run the fast function (thanks @MuellerSeb)

6.3.5 v0.3.6 [6 Aug 2018]

Enhancements

• Added support for transforms with nu=-0.5 (thanks @MuellerSeb)

6.3.6 v0.3.5 [8 Dec 2017]

Bugfixes

• Fixed Python 3 support from v0.3.4

6.3.7 v0.3.4 [28 July 2017]

Features

• Added get_h function to aide in determining optimal h value for a given transformation.

Enhancements

• Added _get_series method to quickly retrieve the summed series for the integration.

• Two updated notebook examples.

Bugfixes

• Moved setting of N to avoid error.

6.3.8 v0.3.3 [28 July 2017]

Features

• Some additional tools to determine accuracy – quick calculation of last term in sum, and evaluated range.

Enhancements

• Default setting of N=3.2/h, which is the maximum possible N that should be chosen, as above this, the series
truncates due to the double-exponential convergence to the roots of the Bessel function.

Bugfixes

• Fixed error in cumulative sum when k is not scalar.
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6.3.9 v0.3.2 [12 July 2017]

Enhancements

• Documentation! See it at https://hankel.readthedocs.io

• Two new jupyter notebook demos (find them in the docs) by @francispoulin

Bugfixes

• Fixed relative import in Python 3 (tests now passing), thanks to @louity

• Fixed docstring of SymmetricFourierTransform to have correct Fourier convention equation

• Fixed bug in choosing alternative conventions in which the fourier-dual variable was unchanged.

6.3.10 v0.3.1 [5 Jan 2017]

Bugfixes

• Fixed normalisation for inverse transform in SymmetricFourierTransform.

Features

• Ability to set Fourier conventions arbitrarily in SymmetricFourierTransform.

6.3.11 v0.3.0 [4 Jan 2017]

Features

• New class SymmetricFourierTransform which makes it incredibly easy to do arbitrary n-dimensional fourier
transforms when the function is radially symmetric (includes inverse transform).

• Addition of integrate method to base class to perform Hankel-type integrals, which were previously handled by
the transform method. This latter method is now used for actual Hankel transforms.

• Documentation!

Enhancements

• Addition of many tests against known integrals.

• Continuous integration

• Restructuring of package for further flexibility in the future.

• Quicker zero-finding of 1/2-order bessel functions.

• This changelog.

• Some notebooks in the devel/ directory which show how various integrals/transforms behave under different
choices of integration steps.
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6.3.12 v0.2.2 [29 April 2016]

Enhancements

• Compatibility with Python 3 (thanks to @diazona)

• Can now use with array-value functions (thanks to @diazona)

6.3.13 v0.2.1 [18 Feb 2016]

Bugfixes

• Fixed pip install by changing readme –> README

Enhancements

• updated docs to show dependence on mpmath

6.3.14 v0.2.0 [10 Sep 2014]

Features

• Non-integer orders supported through mpmath.

6.3.15 v0.1.0

• First working version. Only integer orders (and 1/2) supported.

6.4 Authors

Steven Murray: @steven-murray

6.4.1 Contributors

• Francis Poulin @francispoulin

• Sebastian Mueller @MuellerSeb

# .. highlight:: shell
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6.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.5.1 Types of Contributions

Report Bugs

Report bugs by opening a new issue.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

hankel could always use more documentation, whether as part of the official hankel docs, in docstrings, or even on the
web in blog posts, articles, and such.

In particular, if you have used hankel in a novel way, please consider submitting a script or Jupyter notebook as “demo”
documentation.

Submit Feedback

The best way to send feedback is to file an issue.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :-)
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6.5.2 Get Started!

Ready to contribute? Here’s how to set up hankel for local development.

1. Fork the hankel repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/hankel.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv hankel
$ cd hankel/
$ pip install -e .[dev]

Note the optional extra install of the development dependencies.

If you are using conda, setup your environment the usual way, i.e. conda create -n hankel before
installing as above.

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 hankel tests
$ py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

6.5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Ensure your new functionality is documented
in the relevant docstring (we use Numpy-style docstrings). If it is a significant feature, it will also be preferable
to add a demo notebook to the docs/demos/ directory.

3. If you implement an important new feature, consider adding the feature to the list in README.rst.

4. The pull request should work for Python 2.7, 3.5, 3.6, and 3.7. Check https://travis-ci.org/steven-murray/hankel/
pull_requests and make sure that the tests pass for all supported Python versions.
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6.5.4 Tips

To run a subset of tests:

$ py.test tests.test_hankel

6.5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

6.6 API Documentation

General quadrature method for Hankel transformations.

Based on the algorithm provided in H. Ogata, A Numerical Integration Formula Based on the Bessel Functions,
Publications of the Research Institute for Mathematical Sciences, vol. 41, no. 4, pp. 949-970, 2005.

6.6.1 Classes

HankelTransform([nu, N, h, alt]) The basis of the Hankel Transformation algorithm by
Ogata 2005.

SymmetricFourierTransform([ndim, a, b, N,
. . . ])

Fourier Transform of a radially symmetric function in
arbitrary dimensions.

6.6.2 Functions

get_h(f, nu[, K, cls, hstart, hdecrement, . . . ]) Determine the largest value of h which gives a con-
verged solution.

class hankel.HankelTransform(nu=0, N=None, h=0.05, alt=False)
The basis of the Hankel Transformation algorithm by Ogata 2005.

This algorithm is used to solve the equation
∫︀∞
0
𝑓(𝑥)𝐽𝜈(𝑥)𝑑𝑥 where 𝐽𝜈(𝑥) is a Bessel function of the first kind

of order 𝜈, and 𝑓(𝑥) is an arbitrary (slowly-decaying) function.

The algorithm is presented in H. Ogata, A Numerical Integration Formula Based on the Bessel Functions,
Publications of the Research Institute for Mathematical Sciences, vol. 41, no. 4, pp. 949-970, 2005.

This class provides a method for directly performing this integration, and also for doing a Hankel Transform.

Parameters

• nu (scalar, optional) – The order of the bessel function (of the first kind) J_nu(x)
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• N (int, optional, default = pi/h) – The number of nodes in the calculation. Generally
this must increase for a smaller value of the step-size h. Default value is based on where
the series will truncate according to the double-exponential convergence to the roots of the
Bessel function.

• h (float, optional) – The step-size of the integration.

• alt (bool, optional) – Whether to use the alternative definition of the hankel trans-
form. should be used. Default: False

classmethod G(f, h, k=None, *args, **kwargs)
Alias of final_term_amplitude().

Deprecated since version Deprecated: as of v1. Will be removed in v1.2.

classmethod deltaG(f, h, *args, **kwargs)
Alias of slope_of_last_term().

Deprecated since version Deprecated: as of v1. Will be removed in v1.2.

classmethod final_term_amplitude(f, h, k=None, *args, **kwargs)
Get the amplitude of the last term in cumulative sum.

The absolute value of the non-oscillatory component of the summed series’ last term, up to a scaling
constant. This can be used to get the sign of the slope of the amplitude with h.

Parameters

• f (callable) – The function to integrate/transform

• h (float) – The resolution parameter of the hankel integration

• k (float or array-like, optional) – The scale at which to evaluate the trans-
form. If None, assume an integral.

Returns The value of G, the amplitude of the final term in the series’ sum.

Return type float

integrate(self, f, ret_err=True, ret_cumsum=False)
Do the Hankel-type integral of the function f.

This is not the Hankel transform, but rather the simplified integral,
∫︀∞
0
𝑓(𝑥)𝐽𝜈(𝑥)𝑑𝑥 , equivalent to the

transform of 𝑓(𝑟)/𝑟 at k=1.

Parameters

• f (callable) – A function of one variable, representing 𝑓(𝑥)

• ret_err (boolean, optional, default = True) – Whether to return the es-
timated error

• ret_cumsum (boolean, optional, default = False) – Whether to return
the cumulative sum

Returns

• ret (float) – The Hankel integral of f(x).

• err (float) – The estimated error of the approximate integral. It is merely the last term in
the sum. Only returned if ret_err=True.

• cumsum (array-like) – The total cumulative sum, for which the last term is itself the
integral. One can use this to check whether the integral is converging. Only returned if
ret_cumsum=True
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See also:

transform() The Hankel transform (this function calls transform() with k=1 and f(x) =
f(x)/x.

property nu
Order of the hankel transform.

classmethod slope_of_last_term(f, h, *args, **kwargs)
Get the slope (up to a constant) of the last term of the series with h.

Parameters

• f (callable) – The function to integrate/transform

• h (float) – The resolution parameter of the hankel integration

Other Parameters args, kwargs – All other parameters are passed through to
final_term_amplitude().

Returns The derivative of the last term of the series with h.

Return type float

transform(self, f, k=1, ret_err=True, ret_cumsum=False, inverse=False)
Do the Hankel-transform of the function f.

Parameters

• f (callable) – A function of one variable, representing 𝑓(𝑥)

• ret_err (boolean, optional, default = True) – Whether to return the es-
timated error

• ret_cumsum (boolean, optional, default = False) – Whether to return
the cumulative sum

Returns

• ret (array-like) – The Hankel-transform of f(x) at the provided k. If k is scalar, then this
will be scalar.

• err (array-like) – The estimated error of the approximate integral, at every k. It is merely
the last term in the sum. Only returned if ret_err=True.

• cumsum (array-like) – The total cumulative sum, for which the last term is itself the
transform. One can use this to check whether the integral is converging. Only returned if
ret_cumsum=True

Notes

The Hankel transform is defined as

𝐹 (𝑘) =

∫︁ ∞

0

𝑟𝑓(𝑟)𝐽𝜈(𝑘𝑟)𝑑𝑟.

Or in the alternative case with alt=True:

𝐹 (𝑘) =

∫︁ ∞

0

𝑓(𝑟)
√
𝑘𝑟𝐽𝜈(𝑘𝑟)𝑑𝑟.

The inverse transform is identical (swapping k and r of course).
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xrange(self, k=1)
Tuple giving (min,max) x value evaluated by f(x).

Parameters k (array-like, optional) – Scales for the transformation. Leave as 1 for
an integral.

See also:

xrange_approx() An approximate version of this method which is a classmethod.

classmethod xrange_approx(h, nu, k=1)
Tuple giving approximate (min,max) x value evaluated by f(x/k).

Operates under the assumption that N = 3.2/h.

Parameters

• h (float) – The resolution parameter of the Hankel integration

• nu (float) – Order of the integration/transform

• k (array-like, optional) – Scales for the transformation. Leave as 1 for an inte-
gral.

See also:

xrange() The actual x-range under a given choice of parameters.

class hankel.SymmetricFourierTransform(ndim=2, a=1, b=1, N=None, h=0.05, alt=True)
Fourier Transform of a radially symmetric function in arbitrary dimensions.

Parameters

• ndim (int) – Number of dimensions the transform is in.

• b (a,) – This pair of values defines the Fourier convention used (see Notes below for details)

• N (int, optional) – The number of nodes in the calculation. Generally this must in-
crease for a smaller value of the step-size h.

• h (float, optional) – The step-size of the integration.

• alt (bool, optional) – State if the alternative definition of the hankel transform
should be used. Default: False

Notes

We allow for arbitrary Fourier convention, according to the scheme in http://mathworld.wolfram.com/
FourierTransform.html. That is, we define the forward and inverse n-dimensional transforms respectively as

𝐹 (𝑘) =

√︃
|𝑏|

(2𝜋)1−𝑎

𝑛 ∫︁
𝑓(𝑟)𝑒𝑖𝑏k·r𝑑𝑛r

and

𝑓(𝑟) =

√︃
|𝑏|

(2𝜋)1+𝑎

𝑛 ∫︁
𝐹 (𝑘)𝑒−𝑖𝑏k·r𝑑𝑛k.

By default, we set both a and b to 1, so that the forward transform has a normalisation of unity.
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In this general sense, the forward and inverse Hankel transforms are respectively

𝐹 (𝑘) =

√︃
|𝑏|

(2𝜋)1−𝑎

𝑛

(2𝜋)𝑛/2

(𝑏𝑘)𝑛/2−1

∫︁ ∞

0

𝑟𝑛/2−1𝑓(𝑟)𝐽𝑛/2−1(𝑏𝑘𝑟)𝑟𝑑𝑟

and

𝑓(𝑟) =

√︃
|𝑏|

(2𝜋)1+𝑎

𝑛

(2𝜋)𝑛/2

(𝑏𝑟)𝑛/2−1

∫︁ ∞

0

𝑘𝑛/2−1𝑓(𝑘)𝐽𝑛/2−1(𝑏𝑘𝑟)𝑘𝑑𝑘.

classmethod G(f, h, k=None, ndim=2)
Info about the last term in the series.

Deprecated since version Deprecated: as of v1. Will be removed in v1.2.

classmethod final_term_amplitude(f, h, k=None, ndim=2)
Get the amplitude of the last term in cumulative sum.

The absolute value of the non-oscillatory component of the summed series’ last term, up to a scaling
constant. This can be used to get the sign of the slope of the amplitude with h.

Parameters

• f (callable) – The function to integrate/transform

• h (float) – The resolution parameter of the hankel integration

• k (float or array-like, optional) – The scale at which to evaluate the trans-
form. If None, assume an integral.

• ndim (float) – The number of dimensions of the transform

Returns The amplitude of the final term in the sum.

Return type float

classmethod xrange_approx(h, ndim, k=1)
Tuple giving approximate (min,max) x value evaluated by f(x/k).

Operates under the assumption that N = pi/h.

Parameters

• h (float) – The resolution parameter of the Hankel integration

• ndim (float) – Number of dimensions of the transform.

• k (array-like, optional) – Scales for the transformation. Leave as 1 for an inte-
gral.

See also:

xrange() the actual x-range under a given choice of parameters.

hankel.get_h(f, nu, K=None, cls=None, hstart=0.05, hdecrement=2, atol=0.001, rtol=0.001, maxiter=15,
inverse=False)

Determine the largest value of h which gives a converged solution.

Parameters

• f (callable) – The function to be integrated/transformed.

• nu (float) – Either the order of the transformation, or the number of dimensions (if cls is
a SymmetricFourierTransform)
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• K (float or array-like, optional) – The scale(s) of the transformation. If
None, assumes an integration over f(x)J_nu(x) is desired. It is recommended to use a down-
sampled K for this routine for efficiency. Often a min/max is enough.

• cls (HankelTransform subclass, optional) – Either HankelTransform or a sub-
class, specifying the type of transformation to do on f.

• hstart (float, optional) – The starting value of h.

• hdecrement (float, optional) – How much to divide h by on each iteration.

• rtol (atol,) – The tolerance parameters, passed to np.isclose, defining the stopping
condition.

• maxiter (int, optional) – Maximum number of iterations to perform.

• inverse (bool, optional) – Whether to treat as an inverse transformation.

Returns

• h (float) – The h value at which the solution converges.

• res (scalar or tuple) – The value of the integral/transformation using the returned h – if a
transformation, returns results at K.

• N (int) – The number of nodes necessary in the final calculation. While each iteration uses
N=pi/h, the returned N checks whether nodes are numerically zero above some threshold.

Notes

This function is not completely general. The function f is assumed to be reasonably smooth and non-oscillatory.

The idea is to use successively smaller values of h, with N=pi/h on each iteration, until the result betweenitera-
tions becomes stable.
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